APPROVED ADMIXTURES FOR USE IN CONCRETE

The list of Approved Admixtures for Use in Concrete is published periodically for reference primarily by Caltrans field personnel and others involved in Caltrans projects.

As per State of California, Department of Transportation, Standard Specifications (July 1995), Section 90-4.03, no admixture brand will be used in the work unless it is on Caltrans current list of approved brands for the type of admixture involved. Admixture brands will be considered for addition to the approved list if the manufacturer of the admixture submits to the Transportation Laboratory, 5900 Folsom Blvd., Sacramento, CA 95819, a sample of the admixture accompanied by certified test results which verify that the admixture complies with the requirements in the appropriate ASTM designation. The sample shall be sufficient to permit performance of all required tests. Approval of admixture brands will be dependent upon a determination as to compliance with the specifications, based on the certified test results submitted, together with any tests Caltrans may elect to perform.

The Approved List includes only those admixtures that comply with the following ASTM designations:

C494	- Standard Specification for Chemical Admixtures for Concrete.	pp. 3 - 6
C260	- Standard Specification for Air-Entraining Admixtures for Concrete.	pp. 7 - 8
D98	- Standard Specification for Calcium Chloride.	p. 9
C618	- Standard Specification for Fly Ash and Raw or Calcined Natural	
	Pozzolan for use as a Mineral Admixture in Portland Cement Concrete.	p. 10

The list provides certain essential data for field reference as well as general information that may assist in assessing properties of the plastic concrete.

The information contained herein may not be used for advertising purposes nor is it to be considered as an endorsement by Caltrans.

From ACI 212.1R, "Admixtures for Concrete"

5.2 - COMPOSITION

The materials that are generally available for use as water-reducing admixtures and set-controlling admixtures fall into five general classes:

- 1. Lignosulfonic acids and their salts
- 2 Modifications and derivatives of lignosulfonic acids and their salts
- 3. Hydroxylated carboxylic acids and their salts
- 4. Modifications and derivatives of hydroxylated carboxylic acids and their salts
- 5. Other materials, which include:

June 2000

- (i) inorganic materials, such as zinc salts, borates, phosphates, chlorides,
- (ii) amines and their derivatives,
- (iii) carbohydrates, polysaccharides, and sugar acids,
- (iv) certain polymeric compounds, such as cellulose ethers, melamine derivatives, naphthalene derivatives, silicones, and sulfonated hydrocarbons.

These admixtures can be used either alone or in combination with other organic or inorganic, active or essentially inert substances.

NOTES:

- * Chemical admixtures containing chlorides as Cl⁻ in excess of one percent by weight of admixture shall not be used in prestressed or reinforced concrete.
- ** When the Contractor is permitted to reduce cement content by adding chemical admixtures, the dosage of admixture shall be the dosage used in ASTM Designation: C494 for qualifying the admixtures.
- † This admixture contains more than 1% chlorides as determined by California Test 415 and shall not be used in prestressed or reinforced concrete.

AE = Air Entrained

NAE = Non-Air Entrained

Type A - Water-reducing admixtures

Type B - Retarding admixtures

Type C - Accelerating admixtures

Type D - Water-reducing and retarding admixtures

Type E - Water-reducing and accelerating admixtures

Type F - Water-reducing, high range admixtures

Type G - Water-reducing, high range and retarding admixtures

June 2000

					At the Qu	At the Qualifying ASTM Dosage(s),			
					What Changes are Expected Relative to		cted Relative to	Suggested by	
					the	Reference Co	oncrete?	Manufacturer	
Product	ASTM	Class or Composition	Chloride	Dosage Rates Used	Water	Change in	Initial Set	fl. oz. per	See
or	Type		Content*	to Qualify for	Reduction,	AEA Dose	Retardation,	100 lbs. of	Pg
Brand			%	Appropriate ASTM	%	Needed to	(Acceleration)	cement	2
Name				Tests**, fl. oz. per		Maintain	hours		
				100 lbs. cement		Air			
				(report date)		Content			

6.3

(1997)

6.0

(1995)

5.2

(1999)

16.0

(1983)

5.0

(1992)

4.0

(1992)

8

(1991)

12

(1991)

14.5

(1998)

12.0

(1999)

3.0

(1992)

78.0

(1979)

8.0 to 25.0

(1981)

45.0

(1994)

30.0

(1994)

2.5

(1985)

3.0

(1979)

AE 15.3

AE 12.8

15.5

AE 5.7

AE 7.6

AE 5.8

AE 11.5

AE 15.0

AE 15.4

AE 12.0

AE 8

Negligible

AE 20 to

30

AE 4

AE 5

AE 6.8

AE 11

More

More

More

Less

Less

Less

Less

Less

More

More

More

Same

Less

Same

Same

Less

Less

A(1.0)

A(3.0)

AE 1.0

AE 1.4

W. R. Grace and Company

F

F

F

Е

Α

A, F

G

F

A, F

B, D

C

A, F

C

C

Carboxylated Polyether

Carboxylated Polyether

Carboxylated Polyether

Calcium Chloride,

Triethanolamine

Lignin, Calcium

Chloride, and Polymers

Lignin, Calcium/Sodium

Nitrate, Polymer

Naphthalene Sulfonate

Naphthalene Sulfonate

Melamine-

Formaldehyde Polymer

Melamine and

Naphthalene Sulfonate

Formaldehyde Co-Polymers Hydroxylated Organic

Compounds

Calcium Nitrite

Aqueous Solution

Naphthalene-Sulfonate

Formaldehyde

Copolymer

Calcium Nitrate

Solution

Calcium Nitrate/ Nitrite

Solution

Glucose Polymers,

Lignosulfonate, and

Amine

Lignosulfonate, Amine,

and Glucose Polymer

<1

<1

<1

>20

>8

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

7237 East Gage Ave.

ADVA

Cast-1

ADVA

Flow

ADVA

100

Daraccel

Daracem

50

Daracem

55

Daracem

100

Daracem

100

Daracem

ML 330

Daracem

ML 500

Daratard

17

Darex

Corrosion

Inhibitor

Daracem 19

(formerly

WRDA

19)

Daraset

Polarset

WRDA 20

WRDA 64

Los Angeles, CA 90040

AE 1.1	3.0 to 12.0	
AE 0.0	3.0 to 10.0	
AE (1.4)	8.0 to 40.0	†
Negligible	5.0 to 7.0	†
AE 0.9	3.0 to 9.0	
AE 0.3	9.0 to 11.0	
AE 3.3	12.0 to 15.0	
AE 1.2	6.0 to 25.0	
AE 0.4	6.0 to 25.0	
AE 2.0	2.0 to 7.0	
AE (2.0)	50.0 to 170.0	
AE	8.0 to 25.0	
0.5 to 1.0		

20.0 to 50.0

8.0 to 100.0

2.5

3.0 to 5.0

Revised December 30, 1999

3.0 to 12.0

AE 1.4

June 2000

					At the Qualifying ASTM Dosage(s), What Changes are Expected Relative to the Reference Concrete?			Dosage Rate Suggested by Manufacturer	
Product	ASTM	Class or Composition	Chloride	Dosage Rates Used	Water	Change in	Initial Set	fl. oz. per	See
or	Type		Content*	to Qualify for	Reduction,	AEA Dose	Retardation,	100 lbs. of	Pg
Brand			%	Appropriate ASTM	%	Needed to	(Acceleration)	cement	2
Name				Tests**, fl. oz. per		Maintain	hours		
				100 lbs. cement		Air			
				(report date)		Content			

WRDA 79	A, D	Modified Lignosulfonate	<1	5.0 to 7.5	AE 8 to 10	Less	AE	4.0 to 10.0	
				(1980)			1.0 to 2.2		
WRDA 82	A	Lignosulfonate and	<1	3.0	AE 6.1	Less	AE 0.2	3.0	
		Amine		(1983)					
WRDA	A	Organic Compounds	<1	3.0 and 5.0	AE 5 to 7	Less	AE	3.0 to 5.0	
w/Hycol		w/Hydration Control		(1974)			(0.3) to 1.3		
		Agent							
Recover	D	Hydroxycarboxylic Acid	<1	5.0	AE 9.0	Same	AE 1.7	2.0 to 16.0	
		Salts		(1992)					

Hill Brothers Chemical Co.

1675 N. Main Street

Orange, CA 92667

HICO 610	A	Sodium Lignosulfonate	<1	5.0	NAE 5.7	Not Tested	NAE (1)	5.0 to 12	
				(1987)		for Air			
						Entrained			
						Concrete			
HICO 911	C	Polymer Modified	>33	24	NAE 2.7	Not Tested	NAE (2.0)	32 to 64	†
		Calcium Chloride		(1992)		for Air			
						Entrained			
						Concrete			

Master Builders

23700 Chagrin Blvd. Cleveland, OH 44122

Revised December 30, 1999

Pozzolith	A, F	Naphthalene Sulfonate	<1	15.0	AE 28	More	AE 0.2	10.0 to 20.0	
400-N				(1991)					
Delvo	B, D	Salts of Organic Agent	<1	4.0	AE 7.8	Less	AE 1.1	2.0 to 130	
Stabilizer				(1992)					
Master	Α	Glucose Polymer	<1	2.0	AE 6.0	Less	AE 0.4	2.0 to 4.0	
Pave N				(1989)					
MBL-82	Α	Lignin	<1	5.0	AE 7	Less	AE 0.3	5.0 to 10.0	
				(1991)					
MBL-82	B, D	Lignin	<1	8.0	AE 9.5	Less	AE 1.6	5.0 to 10.0	
				(1990)					
Polyheed	Α	Lignosulfonate,	<1	7.0	AE 6.1	Same	AE 0.4	3.0 to 12.0	
		Triethanolamine,		(1991)					
		Ammonium Thiocyanate							
Polyheed	B, D	Cement Dispersing	<1	4.0	AE 7.6	Less	AE 1.25	3.0 to 12.0	
RI		Agent		(1994)					
Polyheed	A,C,E	Cement Dispersing	<1	9.0, 15.0	AE 6.7	More	AE (0.7)	8.0 to 30.0	
FC 100	,	Agent		(1998)					
Pozzolith	С	Cement Dispersing	<1	27.0	AE 5.7	More	AE (1.7)	10.0 to 45.0	
NC 534		Agent		(1993)					

June 2000

		ASTM	C 494 -	Chemical Admi)	June 20)00		
					At the Qu	alifying AST	M Dosage(s),	Dosage Rate	
					What Chan	ges are Exped	cted Relative to	Suggested by	
						Reference Co		Manufacturer	
Product	ASTM	Class or Composition	Chloride	Dosage Rates Used	Water	Change in	Initial Set	fl. oz. per	See
or	Туре	class of composition	Content*	to Qualify for	Reduction,	AEA Dose	Retardation,	100 lbs. of	Pg
Brand	Турс		%	Appropriate ASTM	%	Needed to	(Acceleration)	cement	2
Name			/0	Tests**, fl. oz. per	/0	Maintain	hours	Cement	2
Name				100 lbs. cement		Air	nours		
				(report date)		Content			
_	, , , , , , , , , , , , , , , , , , ,		1			T	ſ		
Polyheed	Α	Lignosulfonate	<1	5.0	AE 6.9	Less	AE 0.4	3.0 to 12.0	
997		Triethanolamine		(1990)					
Polyheed	F	Lignosulfonate	<1	8.0	AE 12.3	Less	AE 0.3	3.0 to 12.0	
997		Triethanolamine		(1990)					
Pozzolith	B, D	Glucose Polymer	<1	2.5	AE 6.1	Same	AE 1.5	2.0 to 4.0	
100-XR	2,2	Glacost I olymer	1.2	(1993)	122 011	Sume	122 1.0	2.0 to	
Pozzolith	C, E	Cement Dispersing	>24	17.0	AE 5.5	More	AE (1.1)	16.0 to 64.0	
10220Hth	C, E	• •	/24	(1998)	AL 5.5	Wiore	AL (1.1)	10.0 to 04.0	
	4 D D	Agent	.1	, ,	AFCO	T	AE 0.7	204.50	
Pozzolith	A,B,D	Cement Dispersing	<1	4.0	AE 6.9	Less	AE 0.7	3.0 to 5.0	
200 N		Agent		(1998)		_			
Pozzolith	B, D	Polymer,	<1	3.5	AE 5.8	Less	AE 1.8	2.0 to 5.0	
220 N		Triethanolamine		(1991)					
Pozzolith	A	Polymer,	<1	2.0	AE 6.2	Less	AE 0.5	2.0 to 5.0	
220-N		Triethanolamine		(1991)					
Pozzolith	A	Polymer,	<1	3.0	AE 7-8	Less	AE 0.3	3.0 to 5.0	
300 N		Triethanolamine		(1990)					
Pozzolith	B, D	Polymer	<1	5.0	AE 10	Less	AE 2.6	3.0 to 5.0	
300-R	,			(1990)					
Pozzolith	A	Polymer,	<1	4.0	AE 8.0	Less	AE 0.7	3.0 to 7.0	
322-N	11	Triethanolamine	\1	(1990)	7 L L 0.0	Less	112 0.7	3.0 to 7.0	
Pozzolith	A	Calcium Chloride,	>8	6.0	AE 6.5	Less	AE 0.6	3.0 to 9.0	†
	Α	· ·	>0		AE 0.3	Less	AE 0.0	3.0 10 9.0	1
344-N	G F	Triethanolamine		(1991)	A.D. 5. 5		4.E. 1.1		
Pozzutec	C, E	Polymer	<1	15.0	AE 5.5	More	AE 1.1	5.0 to 90.0	
20				(1990)					
Rheobuild	A, F	Naphthalene Sulfonate	<1	15.0	AE 18	Less	AE 0.4	5.0 to 25.0	
1000				(1988)					
Rheobuild	A, F	Cement Dispersing	<1	10.0	AE 13.9	More	AE 1.1	10.0 to 25.0	
2000 B		Agent		(1994)					
Rheobuild	A, F	Based on	<1	4.0	AE 12.4	Less	AE 0.2	4.0 to 12.0	
3000 FC		Glenium Technology		(1998)					
RMC 121	Α	Lignosulfonate	<1	5.0	AE 6.9	Less	AE 0.4	3.0 to 12.0	
	-	Triethanolamine		(1990)					
RMC 121	F	Lignosulfonate	<1	8.0	AE 12.3	Less	AE 0.3	3.0 to 12.0	
INVIC 121	1	Triethanolamine		(1990)	111 12.3	LCSS	AL 0.5	3.0 to 12.0	
Dogg - 1:41	A D		_1	` ′	AT CO	C	AEOO	1.0 to 10.0	
Pozzolith	A, B,	Cement Dispersing	<1	3.0	AE 6.8	Same	AE 0.2	4.0 to 10.0	
80	D	Agent		(1998)					1 1

June 2000

					At the Qualifying ASTM Dosage(s),			Dosage Rate	
					What Chan	What Changes are Expected Relative to			
					the	Reference Co	ncrete?	Manufacturer	
Product	ASTM	Class or Composition	Chloride	Dosage Rates Used	Water	Change in	Initial Set	fl. oz. per	See
or	Type		Content*	to Qualify for	Reduction,	AEA Dose	Retardation,	100 lbs. of	Pg
Brand			%	Appropriate ASTM	%	Needed to	(Acceleration)	cement	2
Name				Tests**, fl. oz. per		Maintain	hours		
				100 lbs. cement		Air			
				(report date)		Content			

Sika Chemical Corporation 1372 East 15th Street Los Angeles, CA 90021

Los Aligeres	, 011	70021							
Plastocrete 161	A	Lignosulfate	<1	4 (1982)	AE 7.7	Same	AE 0.2	3.0 to 5.0	
Plastocrete 161 FL	С	Inorganic Salt-Organic Mixture	<1	16 (1987)	AE 5.4	Same	AE 1.25	12.0 to 24.0	
Plastocrete 161 HE	С	Calcium Chloride Triethylamine	>5	34 (1978)	AE 1.3	Less	AE (1.0)	6.0 to 64.0	†
Plastocrete 161 MR	B, D	Lignosulfonates	<1	2.9 (1989)	AE 7.4	Same	AE 2.4	3.0 to 6.0	
Plastocrete 169	A	Lignosulfonates	<1	4 (1985)	AE 8.73	Same	AE (0.25)	3.0 to 7.0	
Plastocrete 169	B, D	Lignosulfonates	<1	6 (1986)	AE 22	Same	AE 2.3	3.0 to 7.0	
Plastiment	B, D	Hydroxylated Carboxylic Acid	<1	4.0 (1990)	AE 7.3	Same	AE 3.1	2.0 to 4.0	
Sikament FF	F	Melamine Polymer	<1	12 (1994)	AE 12.2	Same	AE 1.3	10.6 to 21.2	
Sikament 86	F	Melamine Polymer	<1	12 (1994)	AE 14.4	Same	AE 0.7	10.6 to 21.2	
Sikament 300	F	Blend Sodium Alkylnapthalene	<1	12 (1992)	AE 12.2	Same	AE 1.0	6.0 to 24.0	
Plastiment NS	A	Lignosulfonates	<1	4 (1996)	AE 7.6	Less	AE 1.1	2.0 to 4.0	
Sika-Rapid- 1	С	RMF-1503	<1	20 (1996)	AE 3.1	Less	AE (1.6)	4.0 to 48.0	

Boral Material Technologies, Inc. 45 N. E. Loop 410, Suite 700

San Antonio, TX 78216

Revised December 30, 1999

Boral RDI	F,G,	Sulfonated Naphthalene Formaldehyde	<1	4.0 (1990)	AE 15.3	Same	AE (1.0)	6.0 to 20.0	
Boral LR	A,D	Lignosulfonate	<1	6.0 (1997)	AE 8.0	Less	AE (1.1)	4.0 to 6.0	
Boral NR	A,D	Lignosulfonate Based Material	<1	3.0 (1997)	AE 6.7	Less	AE (1.2)	3.0 to 6.0	
Boral NW	A,D	Lignosulfonate Based Material	<1	3.0 (1997)	AE 7.5	Less	AE (0.2)	3.0 to 6.0	
Boral X15	A	Lignosulfonate Based Material	<1	4.0 (1993)	AE 5.4	Less	AE (0.1)	3.0 to 10.0	
Boral ACN	C, E	Blend of Admixture	<1	60.0 (1998)	AE 8.6	More	AE (1.6)	20.0 to 50.0	

					At the Qualifying ASTM Dosage(s), What Changes are Expected Relative to			Dosage Rate	
								Suggested by	
					the	Reference Co	ncrete?	Manufacturer	
Product	ASTM	Class or Composition	Chloride	Dosage Rates Used	Water	Change in	Initial Set	fl. oz. per	See
or	Type		Content*	to Qualify for	Reduction,	AEA Dose	Retardation,	100 lbs. of	Pg
Brand			%	Appropriate ASTM	%	Needed to	(Acceleration)	cement	2
Name				Tests**, fl. oz. per		Maintain	hours		
				100 lbs. cement		Air			
				(report date)		Content			

Boral SP	A, F	Sulfonated Napthalene	<1	7.0	AE 17.1	More	AE (0.2)	6.0 to 25.0	
		Formaldehyde Condensate		(1998)					
Boral HC	A,	Carbohydrate Salts	<1	2.5, 5	AE 6.5	Same	AE 0.6	2-6	
	B, D			(1998)	AE 7.3	Same	AE 2.0		
Boral TR	B, D	Carbohydrate Salts	<1	4.0	AE 6.8	Less	AE 3.1	3-6	
				(1998)					
Boral LW*	A	Lignin Family	<1	3.0	AE 9.5	Less	AE 0.3	3-10	
				(1997)					
Boral HW	A	Lignin Family	<1	6.0	AE 6.9	Less	AE 1.0	3-10	
				(1998)					

^{*} Boral HW contains calcium chloride, therefore not recommended for post tension and pre-stressed concrete.

The Euclid Chemical Company 19218 Redwood Road Cleveland, Ohio 44110-2799

Tel. No: (216) 531-9222

June 1, 2000

Accelguard HE	Е	Calcium Chloride based Material	31-35	24 (1997)	AE 6.3	More	(1.5)	16-32	
Eucon 37	A, F	Napthlene Sulfonate	<1	16 (1999)	AE 18.31	Same	AE 0.7	10-16	
Eucon Retarder 100	D	Sodium Gluconate	<1	3 (1999)	AE 6.4	Less	AE 1.9	2-6	
Eucon MR	A	Calcium Nitrate & Calcium Ligno Sulfonate Material	<1	6 (1999)	AE 7.1	Same	AE 1.1	4-10	
Eucon WR	A	Calcium-Sodium Ligno Sulfate	<1	5 (1997)	AE 8.3	Less	AE 0.5	4-5	
Eucon WR-91	A	Calcium Ligno Sulfonate	<1	3 (1999)	AE 6.4	Less	AE 0.6	2-6	

ASTM C 260 - Air-Entraining Admixtures for Concrete

May 2000

Product or	Class or Composition	Chloride	Report Date	Dosage Rate
Branch Name		Content		Suggested by Manufacturer
		(percent)		

Master Builders 32700 Chagrin Blvd.

Cleveland, OH 44122

MBVR Standard	Vinsol Resin	<1	1991	0.4 to 4.0
MB-VR	Vinsol Resin	<1	1992	0.4 to 4.0
Concentrated				
MBAE-90	Rosin Soap	<1	1993	0.25 to 4.0
also called				
Pave Air 90				
Micro-Air	Fatty acid Salts	<1	1991	1.0
Pave-Air	Vinsol Resin	<1	1992	1.0

W. R. Grace and Company

7237 East Gage Ave.

Los Angeles, CA 90040

Los ringeres, err			1000	0.500
Amex 210	Benzene Sulfonate	<1	1989	0.5 to 8.0
	Sodium Salt			
Darex AEA	Organic Acid Salts	<1	1975	0.8
Darex II AEA	Alkaline Solution of	<1	1993	0.75 to 3.0
	Fatty Acid Salts			
Daravair 1000	Neutralized Resin and	<1	1994	0.75 to 3.0
	Rosin			
Daravair	Neutralized Resin and	<1	1994	0.75 to 3.0
	Rosin			
Daravair M	Neutralized Vinsol	<1	1975	1.0
	Resin			
Daravair AT 60	Aqueous Solution of	<1	1994	0.5 to 3.0
	Neutralized Vinsol			
	Resin, Amine and			
	Fatty Acids			

Sika Chemical Corporation

1372 East 15th Street

Los Angeles, CA 90021

Sika AER	Neutralized Vinsol	<1	1986	0.5 to 1.5
	Resin			
Sika AEA 15	Sodium Salt Type	<1	1983	0.5 to 1.5
	Soap			
Sika AEA 14	Sodium Salt of an	<1	1996	0.5 to 3.0
	Organic Ester			

Hill Brothers Chemical Company

1675 North Main St.

Orange, CA 92667-3442

HICO-315-L	Sodium Tall Oil Fatty	<1	1968	0.75 to 3.0			
	Acid Soap						

ASTM C 260 - Air-Entraining Admixtures for Concrete May 2000

Product or	Class or Composition	Chloride	Report Date	Dosage Rate
Branch Name		Content		Suggested by Manufacturer
		(percent)		

Boral Material Technologies, Inc.

45 N. E. Loop 410, Suite 700

San Antonio, TX 78216

Danal Ain 40	Dania Camforatorat	-1	1997	1.0
Boral Air 40	Resin Surfactant	<1	1997	1.0

The Euclid Chemical Company

19218 Redwood Road

Cleveland, Ohio 44110-2799

AEA – 92	Synthetic Organic Chemicals based Admixture	<1	1992	½ to 1.0
	Admixture			

ASTM D	98 -	Calcium	Chloride
ASIMD	70 -	Calcium	Cinoriae

		ASTM D 98 - Calcium Chlor	ride May 2000
Product	Type or Composition (Solid or Solution)	Calcium Chloride Content in Percent (given for solution form only)	Grade (given for solid form only)
Hill Brothers Che 1675 North Main Orange, CA 9266	St.		
HB-98	Solution	30.1	
3113 McKinley W Costa Mesa, CA ASTM Grade	_	33.0	
715 TWI Grade	Boldhon	33.0	
Cargill Solarchem Resour 7200 Central Ave Newark CA 9456	enue		
Liquid Calcium Chloride, Technical Grade,	Solution	38.3	

Treated

	Company Name	Classification of Mineral Admixture	% Calcium Oxide (Range)
(1)	Boral Materials Technology (formerly Western Ash Con 7500 N Dreamy Draw, Suite 234 P.O. Box 7360 Phoenix, Arizona 85036	npany)	
	(a) Navajo Fly Ash (Page, Arizona)	F	6.1 to 7.9
	(b) Mojave Fly Ash (Laughlin, Nevada)	F	8.5 to 9.9
	(c) Apache Fly Ash (Cochise, Arizona)	F	3.0 to 8.0
	(d) Snowflake (Snowflake, Arizona)	F	3.0 to 4.2
	(e) Monticello (Monticello, Texas)	F	7.1 to 8.0
(2)	ISG Resources, Inc. 7525 S.E. 24th Street Mercer Island, Washington 98040		
	(a) Centralia Fly Ash (Centralia, Washington)	F	7.6 to 8.0
	(b) Jim Bridger Fly Ash (Rock Springs, Wyoming)	F	6.2 to 7.5
	(c) IPSC/Delta Fly Ash (Delta, Utah)	F	9.1 to 9.9
	(d) Hunter Fly Ash (Castle Dale, Utah)	F	7.9 to 9.9
(3)	Phoenix Cement Company 2501 W. Behrend Drive P.O. Box 43740 Phoenix, AZ 85080		
	(a) Cholla Fly Ash (Joseph City, Arizona)	F	3.1 to 5.0
	(b) Four Corners Fly Ash (Fruitland, New Mexico	F	2.4 to 2.8
(4)	Mineral Resources Technologies, LLC 120 Interstate North Parkway East, Suite 440 Atlanta, GA 30339		
	(a) Coronado Fly Ash (St. John, Arizona)	F	2.6 to 5.0